Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 342: 140135, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690561

RESUMO

Heavy metals' interactions with plumbing materials are complicated due to the differential formation of biofilms within pipes that can modulate, transform, and/or sequester heavy metals. This research aims to elucidate the mechanistic role of biofilm presence on Lead (Pb) accumulation onto crosslinked polyethylene (PEX-A), high-density polyethylene (HDPE), and copper potable water pipes. For this purpose, biofilms were grown on new pipes for three months. Five-day Pb exposure experiments were conducted to examine the kinetics of Pb accumulation onto the new and biofilm-laden pipes. Additionally, the influence of Pb initial concentration on the rate of its accumulation onto the pipes was examined. The results revealed greater biofilm biomass on the PEX-A pipes compared to the copper and HDPE pipes. More negative zeta potential was found for the biofilm-laden plastic pipes compared to the new plastic pipes. After five days of Pb exposure under stagnant conditions, the biofilm-laden PEX-A (980 µg m-2) and HDPE (1170 µg m-2) pipes accumulated more than three times the Pb surface loading compared to the new PEX-A (265 µg m-2) and HDPE pipes (329 µg m-2), respectively. However, under flow conditions, Pb accumulation on biofilm-laden plastic pipes was lower than on the new pipes. Moreover, with increasing the initial Pb concentration, greater rates of Pb surface accumulation were found for the biofilm-laden pipes compared to the new pipes under stagnant conditions. First-order kinetics model best described the Pb accumulation onto both new and biofilm-laden water pipes under both stagnant and flow conditions.

2.
Environ Pollut ; 337: 122520, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678732

RESUMO

Despite being corrosion-resistant, plastic potable water pipes might accumulate heavy metals on their surface if they convey metal-contaminated tap water. This study examined the influence of water pH and flow conditions on lead (Pb) release from new and biofilm-laden potable water pipes to provide insights regarding decontamination. For this purpose, biofilms were grown onto new crosslinked polyethylene (PEX-A), high-density polyethylene (HDPE), and copper pipes for three months. Lead was then deposited onto the new and biofilm-laden pipes through 5 d exposure experiments under flow conditions. After that, lead release experiments were conducted by exposing the lead-accumulated pipes to lead-free synthetic tap water for 5 d, under both stagnant and water flow conditions. The metal accumulation study showed no significant difference in lead uptake by new pipes and their biofilm-laden counterparts under flow conditions. This could be attributed to the detachment of biofilms that have accumulated lead as water flows through the pipes. Water flow conditions significantly influenced the lead release from new and biofilm-laden water pipes. A lower water pH of 5.0 increased the release of lead from plastic pipes into the contact water, compared to pH 6.0 and 7.8. The greatest percentage of lead was released from biofilm-laden HDPE pipes (5.3%, 120 h) compared to biofilm-laden copper pipes (3.9%, 6 h) and PEX-A (3.7%, 120 h) and after exposure to lead-free synthetic tap water at pH 5.0, under stagnant conditions. On the other hand, under water flow conditions, the greatest lead release was found for new PEX-A pipes (4.4%, 120 h), new HDPE pipes (2.7%, 120 h), and biofilm-laden copper pipes (3.7%, 2 h).


Assuntos
Água Potável , Engenharia Sanitária , Cobre/análise , Chumbo , Abastecimento de Água , Polietileno , Descontaminação , Biofilmes
3.
Sci Rep ; 12(1): 10536, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732638

RESUMO

Snow algae blooms and associated microbial communities play large roles in snow ecosystem processes. Patterns and mechanisms underpinning snow algae bloom spatial distribution and associated microbial community assembly dynamics are poorly understood. Here we examine associations of microbial communities and environmental measures between/within snow algae blooms. Snows from the Cascade Mountains and the Rocky Mountains (USA) were collected from medial (M), peripheral (P), and adjacent (A) zones of red snow algae blooms. Medial snow shows increased levels of pollen, lower oxidation-reduction potential, decreased algal and increased bacterial richness, and increased levels of potassium when compared to A and P within the same bloom. Between the Cascade and Rocky Mountains, fungal communities are distinct but bacterial and algal communities show little differentiation. A weighted OTU co-expression analysis (WOCNA) explores OTU modules and their differential correlation with environmental features, suggesting certain subcommunities may be altered by ecological patterns. Individual OTU interaction networks (fungi and bacteria) show high levels of connectivity compared to networks based on the red snow alga Sanguina nivaloides, which underscores associative differences between algal dominated networks and other taxa.


Assuntos
Microbiota , Micobioma , Bactérias/genética , Eutrofização , Fungos
4.
J Biol Rhythms ; 37(3): 296-309, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35502701

RESUMO

The existence of a microbiome-gut-brain axis has been established wherein gut microbiota significantly impacts host behavior and physiology, with increasing evidence suggesting a role for the gut microbiota in maintaining host homeostasis. Communication between the gut microbiota and the host is bidirectional, and shifts in the composition of the gut microbiota are dependent on both internal and external cues (host-derived signals, such as stress and immunity, and endocrine and environmental signals, such as photoperiod). Although there is host-driven seasonal variation in the composition of the microbiota, the mechanisms linking photoperiod, gut microbiota, and host behavior have not been characterized. The results of the present study suggest that seasonal changes in the gut microbiota drive seasonal changes in aggression. Implanting short-day Siberian hamsters (Phodopus sungorus) with fecal microbiota from long-day hamsters resulted in a reversal of seasonal aggression, whereby short-day hamsters displayed aggression levels typical of long-day hamsters. In addition, there are correlations between aggressive behavior and several bacterial taxa. These results implicate the gut microbiota as part of the photoperiodic mechanism regulating seasonal host behavior and contribute toward a more comprehensive understanding of the relationships between the microbiota, host, and environment.


Assuntos
Microbioma Gastrointestinal , Phodopus , Agressão/fisiologia , Animais , Bactérias , Ritmo Circadiano , Cricetinae , Masculino , Phodopus/fisiologia , Fotoperíodo , Estações do Ano
5.
Mycologia ; 114(2): 215-241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344467

RESUMO

Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.


Assuntos
Incêndios , Micobioma , Incêndios Florestais , Ecossistema , Plantas
6.
Microbiol Resour Announc ; 11(1): e0090921, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34989604

RESUMO

We report here the whole-genome sequence and draft assembly for a bioherbicidal strain of Albifimbria verrucaria, CABI-IMI 368023, which was formerly identified as Myrothecium verrucaria. This isolate has been well studied for the biological control of important weeds, including kudzu and giant salvinia.

7.
J Fungi (Basel) ; 7(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575732

RESUMO

The fungal genus Myrothecium was once polyphyletic but a recent reconsideration of the family Stachybotryaceae spilt it into several genera. The ex-neotype specimen of the species Myrothecium verrucaria is now recognized as Albifimbria verrucaria. The well-studied plant pathogen and candidate bioherbicide CABI-IMI 368023, previously identified as M. verrucaria, was analyzed morphologically and genetically and found to be most consistently aligned with the other representatives of A. verrucaria.

8.
Plants (Basel) ; 10(5)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065068

RESUMO

In this review, we discuss the unrealized potential of incorporating plant-microbe and microbe-microbe interactions into invasive plant management strategies. While the development of this as a viable strategy is in its infancy, we argue that incorporation of microbial components into management plans should be a priority and has great potential for diversifying sustainable control options. We advocate for increased research into microbial-mediated phytochemical production, microbial controls to reduce the competitiveness of invasive plants, microbial-mediated increases of herbicidal tolerance of native plants, and to facilitate increased pathogenicity of plant pathogens of invasive plants.

10.
Ecol Evol ; 10(20): 11352-11361, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144969

RESUMO

It has been previously suggested that snow algal species within the genus Sanguina (S. nivaloides and S. aurantia) show no population structure despite being found globally (S. nivaloides) or throughout the Northern Hemisphere (S. aurantia). However, systematic biogeographic research into global distributions is lacking due to few genetic and no genomic resources for these snow algae. Here, using all publicly available and previously unpublished Sanguina sequences of the Internal Transcribed Spacer 2 region, we investigated whether this purported lack of population structure within Sanguina species is supported by additional evidence. Using a minimum entropy decomposition (MED) approach to examine fine-scale genetic population structure, we find that these snow algae populations are largely distinct regionally and have some interesting biogeographic structuring. This is in opposition to the currently accepted idea that Sanguina species lack any observable population structure across their vast ranges and highlights the utility of fine-scale (sub-OTU) analytical tools to delineate geographic and genetic population structure. This work extends the known range of S. aurantia and emphasizes the need for development of genetic and genomic tools for additional studies on snow algae biogeography.

11.
J Pineal Res ; 69(4): e12696, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32969515

RESUMO

The gut microbiota plays a significant role in a variety of host behavioral and physiological processes. The mechanisms by which the gut microbiota and the host communicate are not fully resolved but include both humoral and direct neural signals. The composition of the microbiota is affected by internal (host) factors and external (environmental) factors. One such signal is photoperiod, which is represented endogenously by nocturnal pineal melatonin (MEL) secretion. Removal of the MEL signal via pinealectomy abolishes many seasonal responses to photoperiod. In Siberian hamsters (Phodopus sungorus), MEL drives robust seasonal shifts in physiology and behavior, such as immunity, stress, body mass, and aggression. While the profile of the gut microbiota also changes by season, it is unclear whether these changes are driven by pineal signals. We hypothesized that the pineal gland mediates seasonal alterations in the composition of the gut microbiota. To test this, we placed pinealectomized and intact hamsters into long or short photoperiods for 8 weeks, collected weekly fecal samples, and measured weekly food intake, testis volume, and body mass. We determined microbiota composition using 16S rRNA sequencing (Illumina MiSeq). We found significant effects of treatment and time on the abundances of numerous bacterial genera. We also found significant associations between individual OTU abundances and body mass, testis mass, and food intake, respectively. Finally, results indicate a relationship between overall community structure, and body and testis masses. These results firmly establish a role for the pineal gland in mediating seasonal alterations in the gut microbiota. Further, these results identify a novel neuroendocrine pathway by which a host regulates seasonal shifts in gut community composition, and indicates a relationship between seasonal changes in the gut microbiota and seasonal physiological adjustments.


Assuntos
Microbioma Gastrointestinal/fisiologia , Glândula Pineal/metabolismo , Estações do Ano , Animais , Cricetinae , Masculino , Phodopus
12.
Microbiome ; 8(1): 139, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32988416

RESUMO

BACKGROUND: Understanding the genetic and environmental factors that structure plant microbiomes is necessary for leveraging these interactions to address critical needs in agriculture, conservation, and sustainability. Legumes, which form root nodule symbioses with nitrogen-fixing rhizobia, have served as model plants for understanding the genetics and evolution of beneficial plant-microbe interactions for decades, and thus have added value as models of plant-microbiome interactions. Here we use a common garden experiment with 16S rRNA gene amplicon and shotgun metagenomic sequencing to study the drivers of microbiome diversity and composition in three genotypes of the model legume Medicago truncatula grown in two native soil communities. RESULTS: Bacterial diversity decreased between external (rhizosphere) and internal plant compartments (root endosphere, nodule endosphere, and leaf endosphere). Community composition was shaped by strong compartment × soil origin and compartment × plant genotype interactions, driven by significant soil origin effects in the rhizosphere and significant plant genotype effects in the root endosphere. Nevertheless, all compartments were dominated by Ensifer, the genus of rhizobia that forms root nodule symbiosis with M. truncatula, and additional shotgun metagenomic sequencing suggests that the nodulating Ensifer were not genetically distinguishable from those elsewhere in the plant. We also identify a handful of OTUs that are common in nodule tissues, which are likely colonized from the root endosphere. CONCLUSIONS: Our results demonstrate strong host filtering effects, with rhizospheres driven by soil origin and internal plant compartments driven by host genetics, and identify several key nodule-inhabiting taxa that coexist with rhizobia in the native range. Our results set the stage for future functional genetic experiments aimed at expanding our pairwise understanding of legume-rhizobium symbiosis toward a more mechanistic understanding of plant microbiomes. Video Abstract.


Assuntos
Genótipo , Medicago truncatula/genética , Medicago truncatula/microbiologia , Microbiota , Solo , Medicago truncatula/anatomia & histologia , Microbiota/genética , Modelos Biológicos , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Simbiose/genética
13.
J Hazard Mater ; 400: 123253, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32947746

RESUMO

In this study, the influence of biofilm presence and water chemistry conditions on lead (Pb) deposition onto low density polyethylene (LDPE) surface was examined. The results demonstrated that biofilm presence on LDPE surfaces strongly and significantly enhanced Pb uptake, with the 13-fold greater equilibrium Pb surface loading when biofilm was present (1602 µg/m2) compared to the condition when it was absent (124 µg/m2). The kinetics of Pb adsorption onto LDPE surface when biofilm was present is best described by Pseudo 2nd order kinetic model. Pb adsorption onto new LDPE surfaces was significantly reduced from 1101 µg/m2 to 134 µg/m2 with increased aqueous solution's ionic strength from 3 × 10-6 M to 0.0072 M. The presence of chlorine residual (2 mg/L) significantly reduced Pb adsorption onto LDPE surfaces by possible oxidation of Pb2+ to Pb4+ species. The kinetics of Pb release from LDPE surfaces was investigated under static and dynamic conditions through immediate exposure of Pb accumulated LDPE pellets to the synthetic water at pH 5.0 and 7.8. The results demonstrated a greater Pb release (86 %) at pH 5.0 compared to the pH 7.8 (58 %). An enhanced Pb release into the contact water was found under dynamic conditions compared to static conditions.


Assuntos
Água Potável , Poluentes Químicos da Água , Adsorção , Biofilmes , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Polietileno , Poluentes Químicos da Água/análise
14.
Anim Microbiome ; 2(1): 35, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499962

RESUMO

BACKGROUND: Microorganisms have intimate functional relationships with invertebrate and vertebrate taxa, with the potential to drastically impact health outcomes. Perturbations that affect microbial communities residing on animals can lead to dysbiosis, a change in the functional relationship, often associated with disease. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, has been responsible for catastrophic amphibian population declines around the globe. Amphibians harbor a diverse cutaneous microbiome, including some members which are known to be antagonistic to Bd (anti-Bd). Anti-Bd microorganisms facilitate the ability of some frog populations to persist in the presence of Bd, where other populations that lack anti-Bd microorganisms have declined. Research suggests disease-antagonistic properties of the microbiome may be a function of microbial community interactions, rather than individual bacterial species. Conservation efforts have identified amphibian-associated bacteria that exhibit anti-fungal properties for use as 'probiotics' on susceptible amphibian populations. Probiotic application, usually with a single bacterial species, may benefit from a greater understanding of amphibian species-specific microbiome responses to disturbances (e.g. dysbiosis vs. recovery). We assessed microbiome responses to two microbial disturbance events over multiple time points. RESULTS: Exposing Lithobates sphenocephalus (southern leopard frog) adults to the biopesticidal bacteria Bacillus thuringiensis, followed by exposure to the fungal pathogen Bd, did not have long term impacts on the microbiome. After initial shifts, microbial communities recovered and returned to a state that resembled pre-disturbance. CONCLUSIONS: Our results indicate microbial communities on L. sphenocephalus are robust and resistant to permanent shifts from some disturbances. This resiliency of microbial communities may explain why L. sphenocephalus is not experiencing the population declines from Bd that impacts many other species. Conservation efforts may benefit from studies outlining amphibian species-specific microbiome responses to disturbances (e.g. dysbiosis vs. recovery). If microbial communities on a threatened amphibian species are unlikely to recover following a disturbance, additional measures may be implemented to ameliorate the impacts of physical and chemical stressors on host-associated microbial communities.

15.
Microb Ecol ; 77(4): 946-958, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868207

RESUMO

Snows that persist late into the growing season become colonized with numerous metabolically active microorganisms, yet underlying mechanisms of community assembly and dispersal remain poorly known. We investigated (Illumina MiSeq) snow-borne bacterial, fungal, and algal communities across a latitudinal gradient in Fennoscandia and inter-continental distribution between northern Europe and North America. Our data indicate that bacterial communities are ubiquitous regionally (across Fennoscandia), whereas fungal communities are regionally heterogeneous. Both fungi and bacteria are biogeographically heterogeneous inter-continentally. Snow algae, generally thought to occur in colorful algae blooms (red, green, or yellow) on the snow surface, are molecularly described here as an important component of snows even in absence of visible algal growth. This suggests that snow algae are a previously underestimated major biological component of visually uncolonized snows. In contrast to fungi and bacteria, algae exhibit no discernible inter-continental or regional community structure and exhibit little endemism. These results indicate that global and regional snow microbial communities and their distributions may be dictated by a combination of size-limited propagule dispersal potential and restrictions (bacteria and fungi) and homogenization of ecologically specialized taxa (snow algae) across the globe. These results are among the first to compare inter-continental snow microbial communities and highlight how poorly understood microbial communities in these threatened ephemeral ecosystems are.


Assuntos
Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia , Microalgas/fisiologia , Neve/microbiologia , Colorado , Microbiota , Países Escandinavos e Nórdicos
16.
FEMS Microbiol Ecol ; 95(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445583

RESUMO

Wood decomposition, a critical process in carbon and nutrient cycles, is influenced by environmental conditions, decomposer communities and substrate composition. While these factors differ between land and stream habitats, across-habitat comparisons of wood decay processes are rare, limiting our ability to evaluate the context- dependency of the drivers of decay. Here we tracked wood decomposition of three tree species placed in stream and terrestrial habitats in a lowland tropical forest in Panama. At 3 and 11 months we measured mass loss, wood nitrogen and wood polymer concentrations, and sampled wood-associated fungal and bacterial communities. After 11 months of decay we found that mass loss occurred 9% faster in streams than on land, but loss of cellulose, hemicellulose and lignin did not differ between habitats. We also observed large differences in microbial decomposer communities between habitats. Overall, we found faster mass loss of wood in water, but no differences in biotic decay processes between habitats despite distinct microbial communities in streams and on land. Our research challenges the assumption that wood decays relatively slowly in water reflecting unfavorable environmental conditions and a limited capacity of aquatic microbial communities to effectively degrade wood polymers.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Árvores/microbiologia , Madeira/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Carbono/metabolismo , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Nitrogênio/metabolismo , Panamá , Rios/química , Rios/microbiologia , Madeira/química
17.
Methods Mol Biol ; 1848: 39-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30182227

RESUMO

High-throughput sequencing of taxon-specific loci, or DNA metabarcoding, has become an invaluable tool for investigating the composition of plant-associated fungal communities and for elucidating plant-fungal interactions. While sequencing fungal communities has become routine, there remain numerous potential sources of systematic error that can introduce biases and compromise metabarcoding data. This chapter presents a protocol for DNA metabarcoding of the leaf mycobiome based on current best practices to minimize errors through careful laboratory practices and validation.


Assuntos
DNA Fúngico , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma , Folhas de Planta/microbiologia , Biodiversidade , Biologia Computacional/métodos , Código de Barras de DNA Taxonômico , Endófitos , Biblioteca Gênica , Análise de Sequência de DNA
18.
Mol Ecol ; 25(18): 4674-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27481285

RESUMO

Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. We examined microbial succession of biofilm communities at three sites in a third-order stream at Konza Prairie over a 2- to 64-day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta-, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early-stage succession (≤16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem.


Assuntos
Bactérias/classificação , Biofilmes , Pradaria , Rios/microbiologia , Microbiologia da Água , Clorofila , Clorofila A , Kansas , Filogenia , RNA Ribossômico 16S
19.
Mol Ecol Resour ; 16(4): 946-56, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26849494

RESUMO

With the increasing democratization of high-throughput sequencing (HTS) technologies, along with the concomitant increase in sequence yield per dollar, many researchers are exploring HTS for microbial community ecology. Many elements of experimental design can drastically affect the final observed community structure, notably the choice of primers for amplification prior to sequencing. Some targeted microbes can fail to amplify due to primer-targeted sequence divergence and be omitted from obtained sequences, leading to differences among primer pairs in the sequenced organisms even when targeting the same community. This potential source of taxonomic bias in HTS makes it prudent to investigate how primer choice will affect the sequenced community prior to investing in a costly community-wide sequencing effort. Here, we use Fluidigm's microfluidic Access Arrays (IFC) followed by Illumina(®) MiSeq Nano sequencing on a culture-derived local mock community to demonstrate how this approach allows for a low-cost combinatorial investigation of primer pairs and experimental samples (up to 48 primer pairs and 48 samples) to determine the most effective primers that maximize obtained communities whilst minimizing taxonomic biases.


Assuntos
Primers do DNA/genética , Microbiologia Ambiental , Metagenômica/métodos , RNA Ribossômico/genética , Análise de Sequência de DNA/métodos , Análise Custo-Benefício , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sensibilidade e Especificidade
20.
Microb Ecol ; 69(4): 788-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687127

RESUMO

Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale.


Assuntos
Betula/microbiologia , Mariposas/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Animais , Betula/crescimento & desenvolvimento , Comportamento Alimentar , Finlândia , Florestas , Dados de Sequência Molecular , Micorrizas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...